[SOLVED] how to plot ohlc candlestick with datetime in matplotlib?

Issue

I need to plot trade data every 5 minutes (one candle)

Here is what I have so far:

from matplotlib.finance import candlestick2_ohlc
fig, ax = plt.subplots()
candlestick2_ohlc(ax,quotes['open'],quotes['high'],quotes['low'],quotes['close'],width=0.6)

And it looks like this:

result

I need to improve it:

  1. The blue mark shows that the xticks display with int, I would like them to be in datetime format.

  2. The red mark shows the x value in the status bar. I would like that to be in datetime format too.

Here is the quotes demo data:

array([ (1459388100, 29.799999237060547, 29.799999237060547, 29.799999237060547, 29.799999237060547, 148929.0, 450030016.0),
   (1459388400, 29.799999237060547, 29.979999542236328, 29.709999084472656, 29.920000076293945, 10395.0, 31069984.0),
   (1459388700, 29.959999084472656, 30.18000030517578, 29.719999313354492, 30.149999618530273, 38522.0, 114999968.0),
   (1459389000, 30.170000076293945, 30.479999542236328, 30.0, 30.149999618530273, 29823.0, 90220032.0),
   (1459389300, 30.149999618530273, 30.75, 30.1299991607666, 30.549999237060547, 38903.0, 118620032.0),
   (1459389600, 30.59000015258789, 30.93000030517578, 30.559999465942383, 30.65999984741211, 42308.0, 130000000.0),
   (1459389900, 30.6200008392334, 30.690000534057617, 30.3799991607666, 30.3799991607666, 20209.0, 61689984.0),
   (1459390200, 30.3700008392334, 30.489999771118164, 30.18000030517578, 30.18000030517578, 18491.0, 56169984.0),
   (1459390500, 30.190000534057617, 30.329999923706055, 30.010000228881836, 30.010000228881836, 17641.0, 53200000.0),
   (1459390800, 30.030000686645508, 30.399999618530273, 30.030000686645508, 30.280000686645508, 9526.0, 28899968.0),
   (1459391100, 30.299999237060547, 30.31999969482422, 30.200000762939453, 30.209999084472656, 9282.0, 28100096.0),
   (1459391400, 30.190000534057617, 30.280000686645508, 30.049999237060547, 30.1200008392334, 8663.0, 26099968.0),
   (1459391700, 30.110000610351562, 30.110000610351562, 29.959999084472656, 30.100000381469727, 15677.0, 47099904.0),
   (1459392000, 30.1200008392334, 30.260000228881836, 30.0, 30.059999465942383, 5649.0, 17000064.0),
   (1459392300, 30.079999923706055, 30.299999237060547, 30.0, 30.280000686645508, 6057.0, 18199936.0),
   (1459392600, 30.290000915527344, 30.34000015258789, 30.1200008392334, 30.1200008392334, 7914.0, 24000000.0),
   (1459392900, 30.1299991607666, 30.15999984741211, 30.079999923706055, 30.139999389648438, 4521.0, 13600000.0),
   (1459393200, 30.139999389648438, 30.139999389648438, 29.829999923706055, 29.899999618530273, 16255.0, 48600064.0),
   (1459393500, 29.93000030517578, 30.1200008392334, 29.889999389648438, 30.1200008392334, 6877.0, 20600064.0),
   (1459393800, 30.1299991607666, 30.15999984741211, 29.979999542236328, 30.030000686645508, 3803.0, 11499904.0),
   (1459394100, 30.040000915527344, 30.1299991607666, 30.0, 30.030000686645508, 4421.0, 13300096.0),
   (1459394400, 29.989999771118164, 30.389999389648438, 29.989999771118164, 30.389999389648438, 7011.0, 21099904.0),
   (1459394700, 30.399999618530273, 30.450000762939453, 30.270000457763672, 30.299999237060547, 12095.0, 36800000.0),
   (1459395000, 30.34000015258789, 30.450000762939453, 30.280000686645508, 30.43000030517578, 9284.0, 28099968.0),
   (1459400700, 30.510000228881836, 30.729999542236328, 30.5, 30.600000381469727, 17139.0, 52500096.0),
   (1459401000, 30.600000381469727, 30.799999237060547, 30.530000686645508, 30.790000915527344, 11888.0, 36400000.0),
   (1459401300, 30.809999465942383, 31.100000381469727, 30.809999465942383, 31.049999237060547, 30692.0, 95099904.0),
   (1459401600, 31.06999969482422, 31.559999465942383, 30.93000030517578, 31.559999465942383, 24473.0, 76200064.0),
   (1459401900, 31.600000381469727, 31.860000610351562, 31.299999237060547, 31.450000762939453, 34497.0, 109200000.0),
   (1459402200, 31.43000030517578, 31.600000381469727, 31.18000030517578, 31.18000030517578, 18525.0, 58200064.0),
   (1459402500, 31.18000030517578, 31.350000381469727, 31.040000915527344, 31.18000030517578, 10153.0, 31599872.0),
   (1459402800, 31.200000762939453, 31.399999618530273, 31.010000228881836, 31.389999389648438, 9668.0, 30100096.0),
   (1459403100, 31.399999618530273, 31.399999618530273, 31.110000610351562, 31.360000610351562, 8445.0, 26499968.0),
   (1459403400, 31.360000610351562, 31.399999618530273, 31.040000915527344, 31.100000381469727, 9538.0, 29799936.0),
   (1459403700, 31.1200008392334, 31.399999618530273, 31.100000381469727, 31.270000457763672, 7996.0, 25000064.0),
   (1459404000, 31.270000457763672, 31.399999618530273, 31.15999984741211, 31.399999618530273, 6760.0, 21100032.0),
   (1459404300, 31.389999389648438, 32.400001525878906, 31.389999389648438, 32.189998626708984, 26108.0, 83700096.0),
   (1459404600, 32.209999084472656, 32.400001525878906, 31.860000610351562, 32.29999923706055, 15736.0, 50599936.0),
   (1459404900, 32.29999923706055, 32.310001373291016, 31.489999771118164, 31.489999771118164, 12945.0, 41399808.0),
   (1459405200, 31.5, 32.0, 31.40999984741211, 31.81999969482422, 11901.0, 37700096.0),
   (1459405500, 31.809999465942383, 31.940000534057617, 31.719999313354492, 31.770000457763672, 6503.0, 20700160.0),
   (1459405800, 31.760000228881836, 31.790000915527344, 31.399999618530273, 31.790000915527344, 10103.0, 31899904.0),
   (1459406100, 31.780000686645508, 32.029998779296875, 31.780000686645508, 31.850000381469727, 12033.0, 38500096.0),
   (1459406400, 31.809999465942383, 33.310001373291016, 31.809999465942383, 33.029998779296875, 58238.0, 192199936.0),
   (1459406700, 33.029998779296875, 33.310001373291016, 32.79999923706055, 32.79999923706055, 36689.0, 121900032.0),
   (1459407000, 32.79999923706055, 32.869998931884766, 32.61000061035156, 32.70000076293945, 15245.0, 49799936.0),
   (1459407300, 32.68000030517578, 32.689998626708984, 31.799999237060547, 32.0099983215332, 20507.0, 65999872.0),
   (1459407600, 32.02000045776367, 32.02000045776367, 31.760000228881836, 31.799999237060547, 29610.0, 94300160.0)], 
  dtype=[('time', '<i4'), ('open', '<f4'), ('high', '<f4'), ('low', '<f4'), ('close', '<f4'), ('volume', '<f4'), ('amount', '<f4')])

Solution

Here is some code that works.

First, we convert the timestamp to a datetime object using datetime.datetime.fromtimestamp.

Then, we set the tick locations using a ticker.MaxNLocator.

I’ve then created a function to feed to ticker.FuncFormatter to use the datetime object as the tick label, and use the integer value of the tick to index the xdate list we created earlier.

The try... except clause is in there in case there is a tick beyond the final timestamp in your quotes array, in which case the function would fail.

I also added autofmt_xdate() to rotate the ticks, and tight_layout() to make room for them

from matplotlib.finance import candlestick2_ohlc
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import datetime as datetime
import numpy as np

quotes = np.array(...)

fig, ax = plt.subplots()
candlestick2_ohlc(ax,quotes['open'],quotes['high'],quotes['low'],quotes['close'],width=0.6)

xdate = [datetime.datetime.fromtimestamp(i) for i in quotes['time']]

ax.xaxis.set_major_locator(ticker.MaxNLocator(6))

def mydate(x,pos):
    try:
        return xdate[int(x)]
    except IndexError:
        return ''

ax.xaxis.set_major_formatter(ticker.FuncFormatter(mydate))

fig.autofmt_xdate()
fig.tight_layout()

plt.show()

enter image description here

Answered By – tmdavison

Answer Checked By – Pedro (BugsFixing Volunteer)

Leave a Reply

Your email address will not be published. Required fields are marked *